Industrial Wireless Sensor Networks

Stephen Smith Teja Kuruganti Wayne Manges Tim McIntyre

Wireless Industrial Sensor Networks

Wireless Enables Ubiquitous Sensing

- National Research Council "advanced wireless sensors" identified as a critical research need.
- President's Committee of Advisors on Science and Technology – "wireless sensors can improve efficiency by 10% and cut emissions by more than 25%"
- Industrial Wireless Workshop trade throughput for reliability

DOE Industrial Wireless Program

- The four parameters are non-orthogonal
- Deployment demands performance
- Understanding environment is the key
- Wireless radio, packaging, antenna
- Industrial harsh, fault tolerant, safety related, cost
- Sensor filters, sampling, sensitivity, interferers, controls
- Networks real-time, latency, throughput, security, integrity, vertical integration

"Engineered" vs. "Can you hear me now?!!"

- RF channel is dynamic and time-varying
- Fast site-specific radio channel path-loss data for use in wireless network simulations
- Robust channel models can be created
- Characterize common environmental elements among data centers

- Closed-loop control requires deterministic quality of service
- Robust channel models will help develop novel estimation techniques for stable controls

Thrust Areas for Advanced Wireless Communications R&D at ORNL

- Robust communication systems improving the robustness and reliability of communication systems by developing advanced signal processing techniques in the areas of spread-spectrum modulation, spacetime coding, iterative error-correcting decoding, interference cancellation, bandwidth-efficient modulation, and rapid synchronization
- Cognitive communications allows communications mode to adapt based on local knowledge of the environment and adequate decisionmaking processes
- Ubiquitous wireless sensor/actuator networks enables

a pervasive and ubiquitous communications (monitoring and control) presence by addressing key issues like self organization, seamless integration, security, scalability, mobility, and energy constraints

 Bio-inspired communications – building micro- and nano-scale communication systems that take advantage of the computational and organizational strategies used by biological organisms to solve complex problems in real time

The Wireless Landscape

Industrial Wireless: A Network of Networks

Co-resident Wireless Systems

Early Adopters - Blazing the Wireless Trail!

7 Managed by UT-Battelle for the U.S. Department of Energy

Why Develop a Global Industrial Wireless Standard?

Because I always know where my signals are going!

Why Develop a Global Industrial Wireless Standard?

Because somebody will always invent an adapter!

What is ISA100?

Family of standards designed from the ground up for many industrial wireless applications

ISA100 Family of Standards: One-Stop Standardization Designed to Accommodate all Your Plant Needs

Interference: Broadband high- powered

11 Managed by UT-Battelle for the U.S. Department of Energy

 $\overline{=}$

More interference: ambient channel noise

Multipath Interference

Differential delays are approx. 1 ns per foot Short-path delays (indoors) are typically $< 0.1 \mu$ s HSS Spread-spectrum modulation can largely cancel long-path effects

Time-Domain Representation

Typical indoor (large room) multipath delay profile.

Frequency-Domain Effect of Multipath

Vector cancellations due to multiple paths (some out-of-phase) result in signal "notches" at specific frequencies as determined by dimensions of RF-reflective environment.

15 Managed by UT-Battelle for the U.S. Department of Energy

Close-Up on 2.45-GHz ISM Band

802.15.4-compliant devices must yield to 802.11 traffic, while real candidate industrial and SG technologies may not.

16 Managed by UT-Battelle for the Department of Energy

ORNL's Solution: Hybrid Spread Spectrum

- Novel, adaptive technique (U.S. Patents 7,092,440; 7,656,931; 7,660,338).
- HSS: a synergistic, programmable combination of DS, FH, and TH.
- Advantages:
 - Adaptive Hybrid Spread-Spectrum (HSS) modulation format combines DSSS and frequency/time hopping in a multi-dimensional, orthogonal signaling scheme.
 - Capable of excellent LPI, LPD & security properties (programmable).
 - Adaptive, robust protocol for high QoS applications.
 - Can be operated in burst mode for very low power drain.
 - Superior resistance to multipath and jamming (high process gain).
 - Easily deployed with modern chip technology.
 - Compliant with existing government rules for license-free ISM bands.
 - Ideally implemented via modern FPGA-based electronics, ASICs, and software-defined radio (SDR) techniques.

17 Managed by UT-Battelle for the Department of Energy

DIRECT-SEQUENCE SPREAD-SPECTRUM SIGNALS

output of modulator before spreading

and lower power density after spreading with PN sequence (PN Rate >> Data Rate)

restored if local PN sequence is same as and lined up with received PN sequence

FREQUENCY-HOPPING SPREAD-SPECTRUM

Narrow spectrum at output of modulator while hopping Spectrum has same bandwidth and power density after hopping with PN sequence (PN Rate << Data Rate for standard FHSS) Original narrowband, high power data stream is restored if local PN sequence is same as and lined up with received PN sequence

HYBRID SPREAD-SPECTRUM (DS/SFH)

National Laboratory

FAST HYBRID SPREAD-SPECTRUM (DS/FFH)

 $G_{p(FH/DS) dB} = G_{p(FH) dB} + G_{p(DS) dB} = 10 \log (no. of hopping channels) + 10 \log (BW_{DS}/R_{info})$

Second Laboratory

21 Managed by UT-Battelle for the Department of Energy

HSS is a Multidimensional Signal

- HSS can be defined in 3 axes (code, frequency, and time).
 - Each dimension is orthogonal with the others.
 - Permissible signal spaces along an axis may also be ~ orthogonal.
 - Codes
 - Frequencies
 - Time slots
- Easily adaptable to exploit many degrees of freedom to meet system requirements.
- Some signal overlaps may be orthogonal.

Simulation confirms the performance

More Results published in upcoming IEEE MILCOM and IEEE CQR

OAK RIDGE

23 Managed by UT-Battelle for the Department of Energy

HSS System Hardware Prototypes

Transmitter

Receiver

Channel Frequencies

Using 891.25 MHz Local Oscillator

Transmitted Frequencies

24 Managed by UT-Battelle for the Department of Energy

FPGA Output Frequencies

Advanced Wireless Telesensor Chip

High-Temperature Sensors

- Wireless sensors capable of working in extreme environments can significantly improve the efficiency and performance of industrial processes by facilitating better monitoring and control.
- Example applications: fossil plants, steam turbines, jet engines.
- SAW devices are also potentially useful at high temps.

Comparison of WBG materials with Si

Property	Si	SiC	GaN
Suitability for High Power Application	Medium	High	High
Suitability for High Frequencies	Low	Medium	High
HEMT structure	No	No	Yes
Suitability of High Temperature Application	No	Yes	Yes
Low Cost Substrate	Yes	No	Yes

 $\overline{\mathbf{F}}$

GaN Material Superiority

GaN is an attractive material for high-power electronics due to its:

- wide bandgap \rightarrow for high temperature operation
- high breakdown field \rightarrow for large blocking voltage applications &
- high saturated electron velocity \rightarrow for high frequency performance

Material	μ	3	E_g	BFM Ratio	JFM Ratio	T _{max} (°C)
Si	1300	11.4	1.1	1.0	1.0	300
SiC	260	9.7	2.9	3.1	60	600
GaN	1500	9.5	3.4	- 24.6	80	700

Baliga figure-of-merit: $BFM = \varepsilon \mu E_G^3$ Johnson's figure-of-merit: $JFM = \frac{E_C . v_s}{2 \pi}$

Ref.: Umesh K. Mishra, et al, "AIGaN/GaN HEMTs— An overview of Device Operation and Applications". June 2002

GaN Device Structure

- AlGaN/GaN HEMT investigated in this work was primarily developed for power applications and was grown on a SiC substrate for high temperature operation.
- The source and drain contacts are ohmic, whereas gate is Schottky barrier with gold as the gate metal.
- Due to bandgap difference between AlGaN and GaN a potential well is formed in the GaN layer at the interface.
- Spontaneous and piezoelectric polarization exist in the heterointerface because of the lattice mismatch between AlGaN and GaN. These polarized charges are confined in the potential well, forming a 2-D electron gas.

Many Potential Wireless Applications

- Personnel Tracking/Locating
- Human Safety Management
- Material Tracking
- Product Tracking
- Field Operator Efficiency
- Field Maintenance Efficiency
- Plant Security
- Business Performance Measures
- Incremental Process Measures
- Extended Plant Visibility (Video)
- Tank Gauging Redundancy

- Access Control
- Intrusion Detection
- Safety Event Monitoring
- Leak Detection
- Equipment Measurements
- Product Measurements
- Inferential Measurements
- Hand-held HMI
- Key Performance Measurement
- Mobile Asset Management
- Evacuation Management

Thanks for your attention!

Questions?

31 Managed by UT-Battelle for the U.S. Department of Energy